52 research outputs found

    Integrating trait-based empirical and modeling research to improve ecological restoration

    Get PDF
    A global ecological restoration agenda has led to ambitious programs in environmental policy to mitigate declines in biodiversity and ecosystem services. Current restoration programs can incompletely return desired ecosystem service levels, while resilience of restored ecosystems to future threats is unknown. It is therefore essential to advance understanding and better utilize knowledge from ecological literature in restoration approaches. We identified an incomplete linkage between global change ecology, ecosystem function research, and restoration ecology. This gap impedes a full understanding of the interactive effects of changing environmental factors on the long-term provision of ecosystem functions and a quantification of trade-offs and synergies among multiple services. Approaches that account for the effects of multiple changing factors on the composition of plant traits and their direct and indirect impact on the provision of ecosystem functions and services can close this gap. However, studies on this multilayered relationship are currently missing. We therefore propose an integrated restoration agenda complementing trait-based empirical studies with simulation modeling. We introduce an ongoing case study to demonstrate how this framework could allow systematic assessment of the impacts of interacting environmental factors on long-term service provisioning. Our proposed agenda will benefit restoration programs by suggesting plant species compositions with specific traits that maximize the supply of multiple ecosystem services in the long term. Once the suggested compositions have been implemented in actual restoration projects, these assemblages should be monitored to assess whether they are resilient as well as to improve model parameterization. Additionally, the integration of empirical and simulation modeling research can improve global outcomes by raising the awareness of which restoration goals can be achieved, due to the quantification of trade-offs and synergies among ecosystem services under a wide range of environmental conditions

    Primed to be strong, primed to be fast: modeling benefits of microbial stress responses

    Get PDF
    Organisms are prone to different stressors and have evolved various defense mechanisms. One such defense mechanism is priming, where a mild preceding stress prepares the organism toward an improved stress response. This improved response can strongly vary, and primed organisms have been found to respond with one of three response strategies: a shorter delay to stress, a faster buildup of their response or a more intense response. However, a universal comparative assessment, which response is superior under a given environmental setting, is missing. We investigate the benefits of the three improved responses for microorganisms with an ordinary differential equation model, simulating the impact of an external stress on a microbial population that is either naïve or primed. We systematically assess the resulting population performance for different costs associated with priming and stress conditions. Our results show that independent of stress type and priming costs, the stronger primed response is most beneficial for longer stress phases, while the faster and earlier responses increase population performance and survival probability under short stresses. Competition increases priming benefits and promotes the early stress response. This dependence on the ecological context highlights the importance of including primed response strategies into microbial stress ecology

    Biocrusts intensify water redistribution and improve water availability to dryland vegetation: insights from a spatially-explicit ecohydrological model

    Get PDF
    Biocrusts are ecosystem engineers in drylands and structure the landscape through their ecohydrological effects. They regulate soil infiltration and evaporation but also surface water redistribution, providing important resources for vascular vegetation. Spatially-explicit ecohydrological models are useful tools to explore such ecohydrological mechanisms, but biocrusts have rarely been included in them. We contribute to closing this gap and assess how biocrusts shape spatio-temporal water fluxes and availability in a dryland landscape and how landscape hydrology is affected by climate-change induced shifts in the biocrust community. We extended the spatially-explicit, process-based ecohydrological dryland model EcoHyD by a biocrust layer which modifies water in- and outputs from the soil and affects surface runoff. The model was parameterized for a dryland hillslope in South-East Spain using field and literature data. We assessed the effect of biocrusts on landscape-scale soil moisture distribution, plant-available water and the hydrological processes behind it. To quantify the biocrust effects, we ran the model with and without biocrusts for a wet and dry year. Finally, we compared the effect of incipient and well-developed cyanobacteria- and lichen biocrusts on surface hydrology to evaluate possible paths forward if biocrust communities change due to climate change. Our model reproduced the runoff source-sink patterns typical of the landscape. The spatial differentiation of soil moisture in deeper layers matched the observed distribution of vascular vegetation. Biocrusts in the model led to higher water availability overall and in vegetated areas of the landscape and that this positive effect in part also held for a dry year. Compared to bare soil and incipient biocrusts, well-developed biocrusts protected the soil from evaporation thus preserving soil moisture despite lower infiltration while at the same time redistributing water toward downhill vegetation. Biocrust cover is vital for water redistribution and plant-available water but potential changes of biocrust composition and cover can reduce their ability of being a water source and sustaining dryland vegetation. The process-based model used in this study is a promising tool to further quantify and assess long-term scenarios of climate change and how it affects ecohydrological feedbacks that shape and stabilize dryland landscapes

    Biocrusts intensify water redistribution and improve water availability to dryland vegetation: insights from a spatially-explicit ecohydrological model

    Get PDF
    Biocrusts are ecosystem engineers in drylands and structure the landscape through their ecohydrological effects. They regulate soil infiltration and evaporation but also surface water redistribution, providing important resources for vascular vegetation. Spatially-explicit ecohydrological models are useful tools to explore such ecohydrological mechanisms, but biocrusts have rarely been included in them. We contribute to closing this gap and assess how biocrusts shape spatio-temporal water fluxes and availability in a dryland landscape and how landscape hydrology is affected by climate-change induced shifts in the biocrust community. We extended the spatially-explicit, process-based ecohydrological dryland model EcoHyD by a biocrust layer which modifies water in- and outputs from the soil and affects surface runoff. The model was parameterized for a dryland hillslope in South-East Spain using field and literature data. We assessed the effect of biocrusts on landscape-scale soil moisture distribution, plant-available water and the hydrological processes behind it. To quantify the biocrust effects, we ran the model with and without biocrusts for a wet and dry year. Finally, we compared the effect of incipient and well-developed cyanobacteria- and lichen biocrusts on surface hydrology to evaluate possible paths forward if biocrust communities change due to climate change. Our model reproduced the runoff source-sink patterns typical of the landscape. The spatial differentiation of soil moisture in deeper layers matched the observed distribution of vascular vegetation. Biocrusts in the model led to higher water availability overall and in vegetated areas of the landscape and that this positive effect in part also held for a dry year. Compared to bare soil and incipient biocrusts, well-developed biocrusts protected the soil from evaporation thus preserving soil moisture despite lower infiltration while at the same time redistributing water toward downhill vegetation. Biocrust cover is vital for water redistribution and plant-available water but potential changes of biocrust composition and cover can reduce their ability of being a water source and sustaining dryland vegetation. The process-based model used in this study is a promising tool to further quantify and assess long-term scenarios of climate change and how it affects ecohydrological feedbacks that shape and stabilize dryland landscapes

    The influence of El Niño–Southern Oscillation regimes on eastern African vegetation and its future implications under the RCP8.5 warming scenario

    Get PDF
    Abstract. The El Niño–Southern Oscillation (ENSO) is the main driver of the interannual variability in eastern African rainfall, with a significant impact on vegetation and agriculture and dire consequences for food and social security. In this study, we identify and quantify the ENSO contribution to the eastern African rainfall variability to forecast future eastern African vegetation response to rainfall variability related to a predicted intensified ENSO. To differentiate the vegetation variability due to ENSO, we removed the ENSO signal from the climate data using empirical orthogonal teleconnection (EOT) analysis. Then, we simulated the ecosystem carbon and water fluxes under the historical climate without components related to ENSO teleconnections. We found ENSO-driven patterns in vegetation response and confirmed that EOT analysis can successfully produce coupled tropical Pacific sea surface temperature–eastern African rainfall teleconnection from observed datasets. We further simulated eastern African vegetation response under future climate change as it is projected by climate models and under future climate change combined with a predicted increased ENSO intensity. Our EOT analysis highlights that climate simulations are still not good at capturing rainfall variability due to ENSO, and as we show here the future vegetation would be different from what is simulated under these climate model outputs lacking accurate ENSO contribution. We simulated considerable differences in eastern African vegetation growth under the influence of an intensified ENSO regime which will bring further environmental stress to a region with a reduced capacity to adapt effects of global climate change and food security

    Dryland Vegetation Functional Response to Altered Rainfall Amounts and Variability Derived from Satellite Time Series Data

    Get PDF
    Vegetation productivity is an essential variable in ecosystem functioning. Vegetation dynamics of dryland ecosystems are most strongly determined by water availability and consequently by rainfall and there is a need to better understand how water limited ecosystems respond to altered rainfall amounts and variability. This response is partly determined by the vegetation functional response to rainfall (β) approximated by the unit change in annual vegetation productivity per unit change in annual rainfall. Here, we show how this functional response from 1983 to 2011 is affected by below and above average rainfall in two arid to semi-arid subtropical regions in West Africa (WA) and South West Africa (SWA) differing in interannual variability of annual rainfall (higher in SWA, lower in WA). We used a novel approach, shifting linear regression models (SLRs), to estimate gridded time series of β. The SLRs ingest annual satellite based rainfall as the explanatory variable and annual satellite-derived vegetation productivity proxies (NDVI) as the response variable. Gridded β values form unimodal curves along gradients of mean annual precipitation in both regions. β is higher in SWA during periods of below average rainfall (compared to above average) for mean annual precipitation <600 mm. In WA, β is hardly affected by above or below average rainfall conditions. Results suggest that this higher β variability in SWA is related to the higher rainfall variability in this region. Vegetation type-specific β follows observed responses for each region along rainfall gradients leading to region-specific responses for each vegetation type. We conclude that higher interannual rainfall variability might favour a more dynamic vegetation response to rainfall. This in turn may enhance the capability of vegetation productivity of arid and semi-arid regions to better cope with periods of below average rainfall conditions

    Relative humidity predominantly determines long‐term biocrust‐forming lichen cover in drylands under climate change

    Get PDF
    1. Manipulative experiments typically show a decrease in dryland biocrust cover and altered species composition under climate change. Biocrust‐forming lichens, such as the globally distributed Diploschistes diacapsis, are particularly affected and show a decrease in cover with simulated climate change. However, the underlying mechanisms are not fully understood, and long‐term interacting effects of different drivers are largely unknown due to the short‐term nature of the experimental studies conducted so far. 2. We addressed this gap and successfully parameterised a process‐based model for D. diacapsis to quantify how changing atmospheric CO2, temperature, rainfall amount and relative humidity affect its photosynthetic activity and cover. We also mimicked a long‐term manipulative climate change experiment to understand the mechanisms underlying observed patterns in the field. 3. The model reproduced observed experimental findings: warming reduced lichen cover, whereas less rainfall had no effect on lichen performance. This warming effect was caused by the associated decrease in relative humidity and non‐rainfall water inputs, which are major water sources for biocrust‐forming lichens. Warming alone, however, increased cover because higher temperatures promoted photosynthesis during early morning hours with high lichen activity. When combined, climate variables showed non‐additive effects on lichen cover, and effects of increased CO2 levelled off with decreasing levels of relative humidity. 4. Synthesis. Our results show that a decrease in relative humidity, rather than an increase in temperature, may be the key factor for the survival of the lichen D. diacapsis under climate change and that effects of increased CO2 levels might be offset by a reduction in non‐rainfall water inputs in the future. Because of a global trend towards warmer and drier air and the widespread global distribution of D. diacapsis, this will affect lichen‐dominated dryland biocrust communities and their role in regulating ecosystem functions worldwide.This research was supported by the Collaborative Research Centre 973 (www.sfb973.de) of the German Research Foundation (DFG) and by the European Research Council (grant agreement no. 647038 (BIODESERT)). P. Porada appreciates funding by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—408092731. F.T. Maestre acknowledges support from Generalitat Valenciana (CIDEGENT/2018/041) and the Alexander Von Humboldt Foundation. J. Raggio acknowledges the ERA-Net BiodivERsA program as Soil Crust InterNational (SCIN) and The Spanish Ministerio de Economía y Competitividad (MINECO) project numbers PRI-PIMBDV-2011-0874 and CRYPTOCOVER, CTM2015-64728-C21-R

    Small‐scale heterogeneity shapes grassland diversity in low‐to‐intermediate resource environments

    Get PDF
    Questions Soil resource heterogeneity influences the outcome of plant–plant interactions and, consequently, species co-existence and diversity patterns. The magnitude and direction of heterogeneity effects vary widely, and the processes underlying such variations are not fully understood. In this study, we explored how and under what resource conditions small-scale heterogeneity modulates grassland plant diversity. Location Oderhänge Mallnow, Potsdam, Brandenburg, Germany. Methods We expanded the individual-based plant community model (IBC-grass) to incorporate dynamic below-ground resource maps, simulating spatial heterogeneity of resource availability. Empirical centimeter-scale data of soil C/N ratio were integrated into the model, accounting for both configurational and compositional heterogeneity. We then analyzed the interplay between small-scale heterogeneity and resource availability on the interaction and co-existence of plant species and overall diversity. Results Our results showed significant differences between the low- and high-resource scenarios, with both configurational and compositional heterogeneity having a positive effect on species richness and Simpson's diversity, but only under low-resource conditions. As compositional heterogeneity in the fine-scale C/N ratio increased, we observed a positive shift in Simpson's diversity and species richness, with the highest effects at the highest level of variability tested. We observed little to no effect in nutrient-rich scenarios, and a shift to negative effects at the intermediate resource level. The study demonstrates that site-specific resource levels underpin how fine-scale heterogeneity influences plant diversity and species co-existence, and partly explains the divergent effects recorded in different empirical studies. Conclusions This study provides mechanistic insights into the complex relationship between resource heterogeneity and diversity patterns. It highlights the context-dependent effects of small-scale heterogeneity, which can be positive under low-resource, neutral under high-resource, and negative under intermediate-resource conditions. These findings provide a foundation for future investigations into small-scale heterogeneity–diversity relationships, contributing to a deeper understanding of the processes that promote species co-existence in plant communities

    Resilience trinity: safeguarding ecosystem functioning and services across three different time horizons and decision contexts

    Get PDF
    Ensuring ecosystem resilience is an intuitive approach to safeguard the functioning of ecosystems and hence the future provisioning of ecosystem services (ES). However, resilience is a multi‐faceted concept that is difficult to operationalize. Focusing on resilience mechanisms, such as diversity, network architectures or adaptive capacity, has recently been suggested as means to operationalize resilience. Still, the focus on mechanisms is not specific enough. We suggest a conceptual framework, resilience trinity, to facilitate management based on resilience mechanisms in three distinctive decision contexts and time‐horizons: 1) reactive, when there is an imminent threat to ES resilience and a high pressure to act, 2) adjustive, when the threat is known in general but there is still time to adapt management and 3) provident, when time horizons are very long and the nature of the threats is uncertain, leading to a low willingness to act. Resilience has different interpretations and implications at these different time horizons, which also prevail in different disciplines. Social ecology, ecology and engineering are often implicitly focussing on provident, adjustive or reactive resilience, respectively, but these different notions of resilience and their corresponding social, ecological and economic tradeoffs need to be reconciled. Otherwise, we keep risking unintended consequences of reactive actions, or shying away from provident action because of uncertainties that cannot be reduced. The suggested trinity of time horizons and their decision contexts could help ensuring that longer‐term management actions are not missed while urgent threats to ES are given priority

    Savanna resilience to droughts increases with the proportion of browsing wild herbivores and plant functional diversity

    Get PDF
    1. Maintaining the resilience and functionality of savannas is key to sustaining the ecosystem services they provide. This maintenance is largely dependent on the resilience of savannas to stressors, such as prolonged droughts. The resilience to drought is largely determined by the interaction of herbivores and the functional composition of vegetation. So far, our understanding and ability to predict the response of savannas to drought under different types of rangeland use and as a function of vegetation composition are still limited. 2. In this study, we used the ecohydrological, spatially-explicit savanna model EcoHyD to determine if the resilience of a savanna rangeland towards prolonged droughts can be enhanced by the choice of rangeland use type (grazer-dominated, mixed-feeders or browser-dominated) and animal density. We evaluated the ability of a Namibian savanna system to withstand droughts and recover from droughts based on its perennial grass cover and the overall species composition. 3. Generally, we determined a low resilience under high grazer densities. Most importantly, we found that functional diversification of herbivores and plants acted as resilience insurance against droughts, leading to greater resistance and recovery of perennial grasses. In particular, a higher proportion of herbivores allowed for higher resilience, probably also due to a short-term switch to more drought-resistant or unpalatable species. 4. In this case, herbivore diversification was of high self-regulatory value by reestablishing trophic complexity, reducing the need for additional management interventions. 5. Synthesis and applications: Savanna systems will be more resistant to drought if (i) a dense perennial grass cover is maintained, protecting the topsoil from heat-induced water losses and erosion, encompassing functionally important species that are particularly well adapted to water stress and that are palatable, if (ii) the grazing pressure is adjusted to the productivity of the system, and (iii) the herbivore community includes browsers
    corecore